Class groups of maximal orders over Krull domains
DOI10.1016/0022-4049(84)90080-XzbMath0535.16005OpenAlexW2078573757MaRDI QIDQ790905
Publication date: 1984
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(84)90080-x
Picard groupscentral simple algebramaximal orderPI-ringslocally factorial Krull domainsnoncommutative affine schemesnormalizing classgroup
Finite rings and finite-dimensional associative algebras (16P10) Grothendieck groups, (K)-theory, etc. (16E20) Divisibility, noncommutative UFDs (16U30) Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) (16H05) Generalizations (algebraic spaces, stacks) (14A20) Rings with polynomial identity (16Rxx)
Related Items (3)
Cites Work
- A duality theorem for orders in central simple algebras over function fields
- Some constructions of rings
- What is an \(\Omega\)-Krull ring?
- The Jespers-Van Oystaeyen conjecture
- Generalized Rees rings and relative maximal orders satisfying polynomial identities
- Ordres maximaux au sens de K. Asano
- Polynomial rings over Krull orders in simple Artinian rings
- Fixed rings of finite automorphism groups of associative rings
- Reflexive modules and algebra class groups over noetherian integrally closed domains
- On bounded Krull prime rings
- A note on maximal orders over Krull domains
- A characterization of central \(\Omega\)-Krull rings
- Théorie de la descente et algèbres d'Azumaya
- Maximal orders over Krull domains
- Hopf algebras and Galois theory
- Separable algebras over commutative rings
- Cancellation of Azumaya algebras
- Division algebras over discrete valued fields
- Untversal blalgebras associated with orders
- Maximal Orders over Regular Local Rings of Dimension Two
- Introduction to Algebraic K-Theory. (AM-72)
- Algebraic \(K\)-theory
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Class groups of maximal orders over Krull domains