On the Motion of the Pendulum in an Alternating, Sawtooth Force Field
From MaRDI portal
Publication:5120534
DOI10.1142/S0218127420501357zbMath1460.70022OpenAlexW3047893093MaRDI QIDQ5120534
Vasily I. Nikonov, Alexander A. Burov
Publication date: 15 September 2020
Published in: International Journal of Bifurcation and Chaos (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0218127420501357
Equilibria and periodic trajectories for nonlinear problems in mechanics (70K42) Qualitative investigation and simulation of ordinary differential equation models (34C60)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Experimental and numerical investigation of chaotic regions in the triple physical pendulum
- Analytical prediction of chaos in rotated Froude pendulum
- Oscillations of one-dimensional systems with periodic potential
- Dynamics investigation of three coupled rods with a horizontal barrier
- A Mel'nikov vector for \(N\)-dimensional mappings
- How to predict stick-slip chaos in \(R^4\)
- Melnikov method and detection of chaos for non-smooth systems
- Stick-slip chaos detection in coupled oscillators with friction
- Integrability and non-integrability in Hamiltonian mechanics
- Experimental study of an inverted pendulum
- Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas
- Mel’nikov’s Function for Two-Dimensional Mappings
- Ordinary Differential Equations and Mechanical Systems
- INVESTIGATION OF TRIPLE PENDULUM WITH IMPACTS USING FUNDAMENTAL SOLUTION MATRICES
- Über die Stabilität der Lösungen Hillscher Differentialgleichungen mit drei unabhängigen Parametern. Erste Mitteilung: Über die Gleichung yn+(λ+γ1cosx+γ2cos2x)y=0