Eigenvalues of Elliptic Boundary Value Problems With an Indefinite Weight Function
DOI10.2307/2000158zbMath0602.35084OpenAlexW4253261633MaRDI QIDQ3737898
Jacqueline Fleckinger-Pellé, Michel L. Lapidus
Publication date: 1986
Full work available at URL: https://doi.org/10.2307/2000158
weight functioneigenvalue problemlower boundsWeyl asymptotic formulaselfadjoint elliptic differential operatorde Wet-Mandl formula
Boundary value problems for second-order elliptic equations (35J25) Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs (35P30) Boundary value problems for higher-order elliptic equations (35J40) Estimates of eigenvalues in context of PDEs (35P15) Asymptotic distributions of eigenvalues in context of PDEs (35P20) Schrödinger operator, Schrödinger equation (35J10) Variational methods for second-order elliptic equations (35J20) Variational methods for higher-order elliptic equations (35J35) Ordinary differential operators (34L99)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Schrödinger equation and the eigenvalue problem
- Asymptotics of the spectrum of variational problems on solutions of elliptic equations
- Indefinite Sturm-Liouville problems and half-range completeness
- Analysis of heat or mass transfer in some countercurrent flows
- Full- and partial-range eigenfunction expansions for Sturm-Liouville problems with indefinite weights
- Estimate of the number of eigenvalues for an operator of Schrödinger type
- On some linear and nonlinear eigenvalue problems with an indefinite weight function
- Subcharacteristic Reversal
- ASYMPTOTICS OF THE EIGENVALUES OF THE SCHRÖDINGER OPERATOR
- Can One Hear the Shape of a Drum?
- Fully Diffused Regions
- On the breakup of accelerating liquid drops
- On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators