Frobenius-Schur indicators for semisimple Lie algebras
From MaRDI portal
Publication:2456179
DOI10.1016/j.jalgebra.2007.06.003zbMath1140.17005arXiv0704.0165OpenAlexW2006341686WikidataQ115351439 ScholiaQ115351439MaRDI QIDQ2456179
Shlomo Gelaki, Mohammad Abu Hamed
Publication date: 17 October 2007
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0704.0165
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Simple, semisimple, reductive (super)algebras (17B20)
Related Items (2)
Examples of non-$FSZ$ $p$-groups for primes greater than three ⋮ Lattices, vertex algebras, and modular categories
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras.
- Semisimple subalgebras of semisimple Lie algebras
- The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group
- S 4 symmetry of 6j symbols and Frobenius–Schur indicators in rigid monoidal C* categories
- Central invariants and higher indicators for semisimple quasi-Hopf algebras
- On higher Frobenius-Schur indicators
- Introduction to Lie Algebras and Representation Theory
- A Frobenius-Schur theorem for Hopf algebras
This page was built for publication: Frobenius-Schur indicators for semisimple Lie algebras