The Morel-Voevodsky localization theorem in spectral algebraic geometry
DOI10.2140/gt.2019.23.3647zbMath1451.14068arXiv1610.06871OpenAlexW2811126634WikidataQ126395024 ScholiaQ126395024MaRDI QIDQ2285045
Publication date: 16 January 2020
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1610.06871
Stable homotopy theory, spectra (55P42) Spectra with additional structure ((E_infty), (A_infty), ring spectra, etc.) (55P43) Motivic cohomology; motivic homotopy theory (14F42) Fundamental constructions in algebraic geometry involving higher and derived categories (homotopical algebraic geometry, derived algebraic geometry, etc.) (14A30) Derived categories of sheaves, dg categories, and related constructions in algebraic geometry (14F08)
Related Items (6)
Cites Work
- The six operations in equivariant motivic homotopy theory
- \(K\)-theory and the bridge from motives to noncommutative motives
- Crystals and D-modules
- A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula
- Homotopy theory of simplicial sheaves in completely decomposable topologies
- Affine representability results in \(\mathbb{A}^1\)-homotopy theory. I: Vector bundles.
- Brauer groups and étale cohomology in derived algebraic geometry
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Algebraic spaces
- Homotopical algebraic geometry. II. Geometric stacks and applications
- Higher Topos Theory (AM-170)
- \(\mathbb{A}^1\)-homotopy theory of schemes
This page was built for publication: The Morel-Voevodsky localization theorem in spectral algebraic geometry