Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions
From MaRDI portal
Publication:2209202
DOI10.1515/fca-2020-0061zbMath1474.35261arXiv1902.08925OpenAlexW3095970196MaRDI QIDQ2209202
José Carmona, Alejandro Ortega, Tommaso Leonori, Eduardo Colorado
Publication date: 28 October 2020
Published in: Fractional Calculus \& Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1902.08925
Boundary value problems for second-order elliptic equations (35J25) Variational methods for second-order elliptic equations (35J20) Semilinear elliptic equations (35J61)
Related Items (3)
Concave-convex critical problems for the spectral fractional Laplacian with mixed boundary conditions ⋮ On a nonlinear elliptic fractional problem under mixed boundary condition: effect of the geometry of the domain ⋮ Existence of solutions to fractional elliptic equation with the Hardy potential and concave-convex nonlinearities
Cites Work
- Unnamed Item
- On some critical problems for the fractional Laplacian operator
- A critical fractional equation with concave-convex power nonlinearities
- The concentration-compactness principle in the calculus of variations. The limit case. II
- Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems
- Positive solutions of nonlinear problems involving the square root of the Laplacian
- Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side
- Symmetry and related properties via the maximum principle
- Combined effects of concave and convex nonlinearities in some elliptic problems
- Bounds for the heat diffusion through windows of given area
- Semilinear elliptic equations with sublinear indefinite nonlinearities
- Qualitative properties of solutions for an integral equation
- Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions.
- Some nonexistence results for positive solutions of elliptic equations in unbounded domains.
- Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
- Dual variational methods in critical point theory and applications
- Some global results for nonlinear eigenvalue problems
- A symmetry problem in potential theory
- The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions
- A concave—convex elliptic problem involving the fractional Laplacian
- Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term
- A priori bounds for positive solutions of nonlinear elliptic equations
- The local regularity of solutions of degenerate elliptic equations
- SOBOLEV VERSUS HÖLDER LOCAL MINIMIZERS AND GLOBAL MULTIPLICITY FOR SOME QUASILINEAR ELLIPTIC EQUATIONS
- Some Remarks on Elliptic Equations with Singular Potentials and Mixed Boundary Conditions
- A Dirichlet problem involving critical exponents
- An Extension Problem Related to the Fractional Laplacian
This page was built for publication: Semilinear fractional elliptic problems with mixed Dirichlet-Neumann boundary conditions