Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds
From MaRDI portal
Publication:2159740
DOI10.2140/gt.2022.26.899zbMath1500.53069arXiv1811.12594OpenAlexW2902200258WikidataQ114045377 ScholiaQ114045377MaRDI QIDQ2159740
Christoph Böhm, Ramiro A. Lafuente
Publication date: 2 August 2022
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1811.12594
Differential geometry of homogeneous manifolds (53C30) Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25)
Related Items (3)
Non-compact Einstein manifolds with symmetry ⋮ Homogeneous Einstein metrics and butterflies ⋮ Geometry. Abstracts from the workshop held June 12--18, 2022
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Scalar curvature behavior of homogeneous Ricci flows
- Desingularisation of Einstein metrics. II
- Homogeneous Ricci solitons are algebraic
- New \(\mathrm{G}_2\)-holonomy cones and exotic nearly Kähler structures on \(S^6\) and \(S^3\times S^3\)
- The Alekseevskii conjecture in low dimensions
- Einstein solvmanifolds are standard
- On the existence of slices for actions of non-compact Lie groups
- Complete Ricci-flat Kähler manifolds of infinite topological type
- Einstein metrics on spheres
- Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons
- Existence and non-existence of homogeneous Einstein metrics
- Metrics with exceptional holonomy
- Transitive group actions and Ricci curvature properties
- Structure of homogeneous Riemann spaces with zero Ricci curvature
- Curvatures of left invariant metrics on Lie groups
- Noncompact homogeneous Einstein spaces
- Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces
- Non-existence of cohomogeneity one Einstein metrics
- On the Ricci curvature of homogeneous metrics on noncompact homogeneous spaces
- The initial value problem for cohomogeneity one Einstein metrics
- Immortal homogeneous Ricci flows
- Einstein solvmanifolds have maximal symmetry
- A variational approach for compact homogeneous Einstein manifolds
- Non-existence of homogeneous Einstein metrics
- On the construction of some complete metrics with exceptional holonomy
- Einstein metrics and Mostow rigidity
- Compact Riemannian 7-manifolds with holonomy \(G_ 2\). I
- Compact Riemannian 7-manifolds with holonomy \(G_ 2\). II
- Four-manifolds without Einstein metrics
- Compact 8-manifolds with holonomy \(\text{Spin}(7)\)
- Desingularisation of Einstein metrics. I
- Homogeneous Ricci solitons
- Strongly solvable spaces
- Simply connected manifolds of positive scalar curvature
- A step towards the Alekseevskii conjecture
- Positively curved cohomogeneity one manifolds and 3-Sasakian geometry
- Structure of homogeneous Ricci solitons and the Alekseevskii conjecture
- Lectures on groups of transformations. Notes by R. R. Simha and R. Sridharan
- A survey of Einstein metrics on 4-manifolds
- Ricci soliton solvmanifolds
- Structure and Geometry of Lie Groups
- Einstein Metrics from Symmetry and Bundle Constructions: A Sequel
- Einstein solvmanifolds and nilsolitons
- Noncompact shrinking four solitons with nonnegative curvature
- On gradient Ricci solitons with symmetry
- Isometry Groups of Riemannian Solvmanifolds
- Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- Non-compact cohomogeneity one Einstein manifolds
- The Ricci pinching functional on solvmanifolds
- K‐Stability and Kähler‐Einstein Metrics
- Homogeneous Ricci Solitons in Low Dimensions
- Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
- Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋
- Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof
- Real Geometric Invariant Theory
- Lie groups beyond an introduction
- Compact four-dimensional Einstein manifolds
This page was built for publication: Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds