Metric differentiability of Lipschitz maps defined on Wiener spaces
From MaRDI portal
Publication:1032582
DOI10.1007/s12215-009-0001-7zbMath1194.46065OpenAlexW2081531166MaRDI QIDQ1032582
Estibalitz Durand-Cartagena, Luigi Ambrosio
Publication date: 26 October 2009
Published in: Rendiconti del Circolo Matemàtico di Palermo. Serie II (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12215-009-0001-7
abstract Wiener spaces\(\mathcal{H}\)-Lipschitz mappings\(\omega^*\)-differentiabilitymetric differentiability
Stochastic calculus of variations and the Malliavin calculus (60H07) Length, area, volume, other geometric measure theory (28A75) Differentiation theory (Gateaux, Fréchet, etc.) on manifolds (58C20) Derivatives of functions in infinite-dimensional spaces (46G05)
Cites Work
- Unnamed Item
- Unnamed Item
- Rectifiable sets in metric and Banach spaces
- The large scale geometry in nilpotent Lie groups
- Sobolev spaces and harmonic maps for metric space targets
- Sobolev-type classes of functions with values in a metric space
- Rademacher's theorem for Wiener functionals
- Metric and \(w^*\)-differentiability of pointwise Lipschitz mappings
- Rectifiable Metric Spaces: Local Structure and Regularity of the Hausdorff Measure
- Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces